NMR SPECTRA OF SOME 3,6-DISUBSTITUTED-5α-OXYGENATED CHOLESTANES

J. M. COXON, M. P. HARTSHORN and G. A. LANE University of Canterbury, Christchurch, New Zealand

(Received in the UK 16 September 1969; Accepted for publication 14 October 1969)

Abstract—The influence of substitutents at C-3, C-6 and C-5 α on the chemical shifts of the 3α -, 3β -, 4α -, 4β - and 6α -protons in the cholestane series are described.

DURING chemical studies involving 5α -hydroxy- and 5α -acetoxy-3,6-disubstituted cholestanes we had occasion to examine in some detail the NMR spectra* of these compounds. For many of these compounds, in addition to the protons geminal to substituents at C-3 and C-6, the 4α - and 4β -proton resonances appeared clearly separated from the methylene envelope region of the spectrum. The signals due to the 4α - and 4β -protons were identified by double-irradiation experiments.

Comparison of chemical shift data for the 6α -proton of the 5α -hydroxy- and 5α -acetoxy- derivatives of 3,6 β -substituted cholestanes (Table 1) provides more extensive documentation for the effect¹ of acylation of a 5α -OH group on the chemical shift of a 6α -proton. Similar marked shifts (Table 2) in the 4α -proton resonance were found to occur on acetylation of the 5α -OH group of 6-substituted-3-keto-cholestan- 5α -ols. The parallel shifts in the 4α - and 6α -proton resonances found for these latter compounds are consistent with a preferred conformation for the 5α -acetate function in which the CO group is symmetrically located relative to the 4α - and 6α -protons. In contrast to the marked deshielding effect on the 4α - and 6α -proton resonances of a 5α -acetate group, acetylation of a 5α -OH group results in shielding of the 4β -proton resonance (Table 2). Table 2 also reveals the effect on the chemical shift 4α - and 4β -proton resonances of variation of 6β -substituents.

Naryanan et al.^{1,2} have suggested that the preferred conformation for the 5α -acetate function is that one (I) in which the CO group is eclipsed with the C^{5 α}-O bond. With the ester group in this orientation the marked deshielding of the 4α - and 6α -

[•] Determined at 60 Mc for 10% w/v solutions in CDCl₃ with CHCl₃ and TMS as internal standards.

protons must arise from a CO oxygen atom-proton proximity effect rather than as a result of the anisotropy of the CO function.³

Acetylation of a 5α -OH group of 3β ,6-disubstituted-cholestan- 5α -ols results in a shift (ca. 0.4 ppm) to higher field of the 3α -proton resonance (Table 3). These values are in accord with the isolated result (0.43 \pm 0.05 ppm) for the 3β -acetoxy- 5α -hydroxy- 6β -acetylthio- 5α -cholestane system. The 3β -proton resonance of 3α ,6 β -disubstituted-cholestan- 5α -ols was subject to only minor shifts (0.01–0.07 ppm) to higher field on acetylation of the 5α -OH group.

Table 1. Chemical shift of 6 α -h (ppm downfield from tms) for 3,6-disubstituted-5 α -oxygenated cholestanes

3-Substituent	6-Substituent	6α-H for 5α-Hydroxy-	6α-H for 5α-Acetoxy-	δ _{5e-OAc} -δ _{5e-OE}
c=o	β-ОАс	4.72	5-90	+ 1-18
C≕O	β-C1	3.85	5.20	+1.35
C=O	β-F	4:24	5.50	+1.26
β-OAc	β-OAc	4.75	5.87	+1.12
β-ОАс	β-C1	3.85	5.12	+1.27
β-ОАс	β-F	4.23	5.45	+1.22
—СH ₂ —	β-OAc	4.68	5.80	+1.12
α-ОН	β-ОАс	4.75	5.80	+1.05
α-OAc	β-ОАс	4.74	5.78	+1.04
β-Cl	β-OAc	4.72	5.80	+1.08
β-ОН	β-CI	3.85	5.05	+1.20
α-ОН	β-ОН	3.58	4.65	+ 1:07

TABLE 2. CHEMICAL SHIFT (PPM) OF 4α-H AND 4β-H FOR 6-SUBSTITUTED-CHOLESTAN-3-ONES

6β-Substituent	4α-Η for 5α-Hydroxy-	4α-H for 5α-Acetoxy-	$\delta_{s=OAc}$ – $\delta_{s=OH}$
Н	2:12	3.27	+ 1·15
OAc	2.04	3.31	+1.27
Cl	2·15	3.38	+1.23
F	2·12	3.33	+1.22
6β-Substituent	4β-H for 5α-Hydroxy-	4β-H for 5α-Acetoxy-	δ _{5=OAc} -δ _{5=OH}
Н	2.67	2:51	-016
OAc	2.88	2.77	-0-11
Cl	3.34	3·14	-0.20
	3.15	2.98	-0-17

The effect of acetylation of a 5α -OH group on the chemical shifts for the 4α - and 4β -protons is markedly dependent (Table 4) on whether C-6 is tetrahedral or trigonal. The introduction of a ketone function at C-6 into 5α -hydroxy-3-keto-cholestane is accompanied by a shift of the 4α -proton resonance to lower field (0·19 ppm); for 5α -acetoxy-3-keto-cholestane the 4α -proton resonance shifts to higher field (0·49 ppm) on the introduction of a 6-ketone function. It is believed that these results for the 4α -proton chemical shift in the 5α -acetoxy compounds reflect a change in conformation of the 5α -acetate group when C-6 is trigonal. This change in conformation may be the consequence of either (or both of) the introduced carbonyl-carbonyl dipolar interaction or the removal in the 6-ketone of the conformational constraint normally exerted on the acetate group by the 6α -proton.

Table 3. Chemical shift (PPM) of 3α -h and 3β -h for 3,6-disubstituted-5 α -oxygenated-cholestanes

3β-Substituent	6-Substituent	3α-H for 5α-Hydroxy-	3α-H for 5α-Acetoxy-	$\delta_{5\text{e-OAc}}$ – $\delta_{5\text{e-OH}}$
OAc	-CH ₂ -	5-18	4.80	-0-38
OAc	В-ОАс	5-17	4.75	-042
OAc	α-OAc	5:08	4 -6 7	-041
OAc	β-C1	5.12	4.72	0-40
OAc	β-F	5.12	4.75	-0-37
ОН	β-C1	4-00	3-58	-0-42
ОН	—СH ₂ —	4.05	3-70	-035
3a-Substituent	6-Substituent	3β-H for 5α-Hydroxy-	3β-H for 5α-Acetoxy	δ _{5=-OAc} δ _{5=-OH}
ОН	В-ОАс	4-22	4-20	-0-02
ОН	β-ОН	4.25	4·18	-0-07
OAc	В-ОАс	5.26	5.20	-0-06

TABLE 4. CHEMICAL SHIFT (PPM) OF 4α-H AND 4β-H FOR 3,6-DISUBSTITUTED-5α-OXYGENATED-CHOLESTANES

3-Substituent	5α-Substituent	$4\alpha - H$ for $C^6 = 0$	4α -H for — C^6H_2 —	δ_{CH_2} – δ_{∞}
C=0	ОН	2:31	2-12	-019
C=O	OAc	2.78	3.27	+0-49
β-ОАс	OAc	2-39	2.79	+040
3-Substituent	5α-Substituent	4β-H for C ⁶ = 0	4β-H for —C ⁶ H ₂ —	δ_{CH_2} – δ_{∞}
c=o	ОН	2.96	2-67	+0.29
c=o	OAc	2-97	2.51	+046

Acknowledgement—The authors acknowledge grants and a research fellowship to one of us (GAL) from the Research Committee of the New Zealand Universities Grants Committee.

REFERENCES

- ¹ C. R. Narayanan and M. R. Sarma, Tetrahedron Letters 1553 (1968).
- ² C. R. Narayanan, M. R. Sarma, T. K. K. Srinivasan and M. S. Wadia, Canad. J. Chem. 47, 1601 (1969).
- ³ G. J. Karabatsos, G. C. Sonnichsen, N. Hsi and D. J. Fenoglio, J. Am. Chem. Soc. 89, 5067 (1967).
- ⁴ K. Tori and T. Komeno, Tetrahedron 21, 309 (1965).